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Abstract—This paper revisits the CHAMPAGNE algorithm
within the Sparse Bayesian Learning (SBL) framework and
establishes its connection to reweighted sparse coding. We demon-
strate that the SBL objective can be reformulated as a reweighted
{>1-minimization problem, providing a more straightforward
interpretation of the sparsity mechanism and enabling the design
of an efficient iterative algorithm. Additionally, we analyze
the behavior of this reformulation in the low signal-to-noise
ratio (SNR) regime, showing that it simplifies to a weighted
{21-regularized least squares problem. Numerical experiments
validate the proposed approach, highlighting its improved com-
putational efficiency and ability to produce exact sparse solutions,
particularly in simulated MEG source localization tasks.

Index Terms—Inverse problem, Sparse Bayesian Learning,
reweighted (group)-lasso

I. INTRODUCTION

Inverse problems focus on reconstructing unknown param-
eters or sources from incomplete and noisy observed data. In
the context of magnetoencephalography (MEG), this involves
estimating cortical activity from sensors located at several
points around the subject’s head [1]. Such an inverse problem
is highly under-determined, where the number of potential
sources exceeds the available measurements. Addressing this
under-determination requires introducing some regularization
techniques or prior information.

Among these strategies, the minimum norm estimate
(MNE) [2] is a classical approach that favors smooth solu-
tions by minimizing the ¢, norm of the sources. However,
MNE fails to capture the localized nature of brain activity.
Sparsity-promoting methods have been developed to address
this limitation, leveraging the assumption that brain activity is
spatially sparse.

In particular, lasso-type methods [3], [4], which include ¢;-
regularized least squares and extensions such as the group
lasso [5], enforce sparsity directly on the solution, and have
been widely adopted for MEG source localization [6], [7].
They use convex penalties, and their optimization prob-
lems can be efficiently solved with iterative algorithms,
such as the (Fast) Iterative Shrinkage-Thresholding Algorithm
((BISTA) [8], [9]. However, lasso-based methods rely heavily
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on manually tuning regularization parameters, which can be
challenging in practice.

In contrast, Bayesian frameworks such as Sparse Bayesian
Learning (SBL) [10] require minimal tuning, as the only
parameter to adjust is the noise variance, which can also
be estimated within the framework. SBL introduces a hi-
erarchical Bayesian model where source variances act as
hyperparameters driving sparsity, and solutions are estimated
iteratively. Among SBL algorithms, CHAMPAGNE [11], [12]
has been particularly successful, offering robust solutions by
jointly estimating the sources and their variances. However,
while CHAMPAGNE induces sparsity in source variances,
the corresponding source estimates remain only approximately
sparse, with small but not exactly zero components. This
introduces the need for manual thresholding.

a) Contributions and outline: In this work, we revisit
the CHAMPAGNE algorithm within the SBL framework by
reformulating it as a reweighted sparse coding problem. Sec-
tion II introduces the general SBL model and reviews the
CHAMPAGNE algorithm. Section III demonstrates that the
SBL objective can be expressed as a reweighted sparse coding
problem, which leads to a more efficient algorithm. We also
provide a convergence analysis. Furthermore, we examine the
behavior of this reformulation in the low signal-to-noise ratio
(SNR) regime. Finally, our numerical experiments validate
our approach, showing improved computational efficiency and
achieving exact sparsity in the solutions.

b) Notations: Vectors are in bold lowercase (e.g., v), and
matrices in bold uppercase (e.g., M). The element at the i-th
row and j-th column of a matrix M is denoted by M]3, j],
while M, :] represents the i-th row, and M[:, j] denotes the
j-th column. Similarly, the ¢-th coordinate of a vector v is
denoted by v[i] or v;

II. SBL AND CHAMPAGNE ALGORITHM

This section presents the general SBL model. For the sake
of simplicity, we assume that the noise variance is known. We
then focus on the CHAMPAGNE algorithm, which adopts a
majorize-minimize strategy relying on a convex upper bound
of the SBL objective.



A. SBL model

In the context of MEG, the objective is to estimate the
cortical activity X from the sensor measurements Y. This
relationship is modeled as follows:

Y = GX +N, (1)

where Y € RM*T represents the observed sensor data, G €
RMXN s the leadfield matrix describing the mapping from
cortical sources to sensors, X € RY*T denotes the unknown
source activities, and N € RM*T is additive white (in space
and time) Gaussian noise with N[n,t] ~ N(0,02),¥n, ..

To promote sparsity, SBL models the source activity X as
a zero-mean multivariate Gaussian with a diagonal covariance

matrix I':
X[, ] ~ N(0,T), )

where the hyperparameters <, encode the variance of each
source, indirectly controlling its sparsity. While various priors
can be placed on ~,, we focus on an exponential prior:

Tn ™~ 5(,0)a

= Diag [7] ) VTL, Yn = 0,

3)

a particular case of the classical Gamma prior often used for
scale parameters.

To estimate <, SBL proposes to maximize the marginal
likelihood of the data (type-II likelihood), which leads to
minimizing the following cost function:

L (y) = —logp(Y,v) = —logp(Y|y) —logp(y) (4
1 1 N
= YIS, (1) Y + S log [By(n)] 40D v,
n=1
where:

2, (v) = 0?1y + GTG™. (5)

To optimize £!!(+), the Expectation-Maximization (EM)
algorithm [10] alternates updates of the sources X and the
hyperparameters ~y. However, it tends to converge slowly. In
contrast, the CHAMPAGNE algorithm [11] utilizes a convex
bounding strategy, resulting in significantly faster computa-
tions. Hashemi et al. [12] provides a unified perspective on
these and related SBL algorithms, highlighting CHAMPAGNE
as an effective and scalable solution, which is further elabo-
rated in the next section.

B. CHAMPAGNE algorithm

The CHAMPAGNE algorithm comes from reformulating
the original marginal likelihood objective as a minimization
problem involving the sources X, the hyperparameters ~y, and
an auxiliary dual variable v. Th e resulting cost function is
expressed as:

1 N & X[t
C(X,7,V) :7T02||Y—GX||2 § § S
e n=1 n

t=1

’ﬂ \

+viy —w'(v) 6)

+ van,
n=1

where w*(v) is the concave conjugate of log |3, ()|
log [3, (7); (N

The CHAMPAGNE algorithm alternates between updates of
v, X, and «, minimizing Eq. (6) with respect to each variable
while keeping the others fixed. The updates are computed
iteratively as follows:

w*(v) = mngTv -

v = Diag [GTEgl('y(i_l))G} , (8)
o _ 1XOpd) o
T'(vn + p)

The iterative updates have been shown to converge to a local
minimum [12].

III. SBL BY (RE)WEIGHTED SPARSE CODING

This section shows that the original SBL optimization prob-
lem can be reformulated as a reweighted sparse coding prob-
lem, where sparsity is enforced iteratively through adaptive
weights. Then, we analyze the behavior of this reformulation
in the low SNR regime, where the log-determinant term
simplifies, leading to a weighted f5;-regularized least squares
problem.

A. Reformulation and Algorithm

The following proposition shows that for a fixed v, the
minimization of Eq. (6) reduces to a weighted (group)-lasso
sparse coding problem.

Proposition 1. Minimizing the joint cost function concerning
both X and =y is equivalent to solving a sparse coding problem
for X. Specifically, swe have

Y — GXHQ
min s ZZ T
n=1t=1 n=1
2 p+vn
—mlanY GX]|| +2Z 1X[n, ]l

Proof. The equivalence is obtained by substituting the optimal
solution for « derived in Eq. (10) into the original cost
function Eq. (6). N

Based on this reformulation, the iterative algorithm proceeds
as follows

Algorithm 1. Initialization: v(*) € RY.
e Update v:

v — Diag [Gngl(y(”)G] . (11)

o Minimize wrt X
1 N
5.3llY = GXIP + VT Y- Vo F ol Xln, i)l . (12)
€ n=1

using K iterations of ISTA. Denotes the output by X @,



o Update ~:
IXO ]Il

T +p)

To analyze the convergence properties of Alg. 1, we intro-
duce the following auxiliary objective function F:

Y = (13)

F(X,v)

1Xn, ][ —w* (v).

(14)
with w*(v) given by Eq. (7). F is directly linked to the
original SBL cost function £/, as stated in the following
lemma.

vy-cex|z2 &
_ | 2y
n=1

p+n
To? T

Lemma 1. If (X, v) is a stationary point of F, then ~y defined
as Ynp = AXmA G g stationary point of L1
"V (ptvn) P '

Proof. The equivalence follows directly from the relation:

F(X® vy = (X 4+ vy v > 0.

Which is also true for a stationary point (X,v) of F with
Vn = XA gor all n. Hence, (X,~,v) is a stationary

T (p+vn)
point 0% C, and then ~ satisfies the stationarity conditions of
LT as shown in [12]. W

Next, we show that F decreases monotonically during the
iterations.

Lemma 2. For all i > 0, we have

FXOD 01y < Fx® @)y = Lyxaen _ o2
) — ) 2 .
Proof. Using the properties of ISTA, we have (see for exam-
ple [9]):
FXOD 40y < Fx® 60y = Lyxaen _ gz,
(15)

(i+1) v), the result

Furthermore, since vt minimizes F (X
follows. W

By combining the results above, we can state the following
theorem on the convergence of the proposed algorithm.

Theorem 1. Any accumulation point of the sequence {~®}
is a stationary point of L.

Proof. By Lemma 2, the sequence {F(X® v()} is strictly
decreasing. Moreover, since ¥ > 021, the sequence {v()} is
necessarily bounded. Hence, F is lower bounded, ensuring the
convergence to a local minimum F*. Finally, the continuity of
F ensures that any accumulation point satisfies the stationarity
conditions of £, as established in Lemma 1. W

In practice, monitoring the convergence of LI can be
numerically challenging due to the division by +,,, which tends
to zero for sparse solutions. As at each iteration w*(v(") is
given by:

W' (V) = v A (D log| 5, (7171

;o (16)

F can be stably monitored without divisions by ,,.

To accelerate convergence, ISTA can be replaced by FISTA,
which improves the convergence rate and reduces the overall
computational cost.

B. Low SNR regime

The low SNR regime is particularly relevant in MEG
applications, where the signal-to-noise ratio is often low due to
measurement noise and the small amplitude of cortical activity.
In this regime, as proposed in [12], the contribution of the
data covariance to the log-determinant term in £/ becomes
negligible. Specifically, we have:

log |Z,| = Tr(GI'GT) + O(SNR). (17)

Substituting this approximation into the SBL objective, one
can show that the resulting cost function £°* can be expressed
as:

N T
low X[n,t]2
£ - I

n=1 t=1

T 2||Y GX|]? +

el

N

Z IGLnlI? + p)vn (18)
Minimizing £ with respect to both X and ~ yields the
equivalent minimisation problem in X:

mln*IIY GXH2+U2\FZ\/IIG a2+ p 1X [0l
(19)

which shows that in the low SNR regime, the problem reduces
to a weighted /o;-regularized least squares problem. The
weights depend explicitly, and only, on the norm of the
columns of G and the regularization parameter p.

IV. NUMERICAL RESULTS

In this section, we numerically compare the standard
CHAMPAGNE algorithm against Alg. 1. We also compare
two different implementations of the /o1-solver in Alg. 1,
a standard FISTA solver and celer [13], a highly optimized
solver leveraging a duality-based approach. It should be noted
that celer does not provide a solver for reweighted /51, which
causes our setup to introduce a variable change for that
implementation. This may impact speed and result quality for
celer when 7" > 1.

The experiments are run on an Ubuntu system equipped
with an i7-10750H processor and 16 GB of RAM.
All benchmarks are managed using benchopt [14]. The
source code to reproduce our results can be found at
https://gitlab.inria.fr/dsechet/sbl_as_sparse_coding.

A. Compressed sensing

We first compare the algorithms on a simple compressed
sensing scenario, with G a 300 x 1000 column-normalized
standard Gaussian random matrix, 90% sparsity, and T' = 1.
Signals are generated with low noise (average SNR of 25 dB
in sensor space). All three implementations show their best
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performance for p = 0. Performance is aggregated across
1000 random samples: for each experiment, both G and
X are redrawn. Performance over time is shown in Fig. I.
Our algorithm is significantly faster than CHAMPAGNE and
converges to a slightly better solution in terms of SNR.
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Fig. 1. Median SNR and F evolution across 1000 compressed sensing
problems for 7’=1and p =0

B. MEG setting

To evaluate the robustness of our algorithm, we tested it
in a realistic MEG inverse problem scenario. MEG inverse
problems usually involve highly sparse solutions in space but
are particularly challenging due to their high noise levels and
ill-conditioned sensing matrices. We use a column-normalized
matrix G of size 305 x 1884, derived from the sample subject
in the MNE-python dataset [15], and generate a sparse signal
in space, with 0.5% of active sources. The active sources are
populated for T' = 10 timesteps using a randomized frequency,
amplitude, and phase sinusoid. The noise variance is chosen
so the data’s SNR is close to 0.3 dB.

Given the high noise level, we compare the standard SBL
algorithm to its low-SNR approximation, where we treat o,
as a hyperparameter o, effectively eliminating the need for
p, which we set to zero. In this regime, the approximate
algorithm tends to induce excessive sparsity, often leading to
trivial solutions. While adjusting p could mitigate this, our
experiments indicate that the optimal weight would typically
be negative. Performance is aggregated across 30 trials, with
G fixed while X and the noise are resampled.

In Fig. 2, we plot the time to convergence of various
algorithms, along with the SNR at convergence. Convergence
is monitored using the cost function introduced in Eq. (19).
The results highlight a tradeoff between speed and solution
quality. While the standard SBL formulations achieve much
better solution quality, they converge more slowly than the
low-SNR approximation methods.

Celer achieves the fastest convergence in low-SNR mode
and also achieves slightly better results than CHAMPAGNE.
That tendency is inverted for the standard SBL formulation,
with CHAMPAGNE slightly outperforming celer while being
faster. FISTA performs poorly on this problem, converging
much slower than the other two implementations, both in
SBL and low-SNR mode. Our choice of using o¢ as a

hyperparameter instead of directly setting 0y = o, in the
low-SNR approximation is vindicated, as we can improve the
solutions’ quality without any significant impact on runtime
with an optimal choice of o¢. In Fig. 3, we can see how the
SNR evolves over time for both the standard SBL algorithm
and the low-SNR approximation with an optimal oy.
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Fig. 2. Median SNR and time to convergence accross 30 MEG problems
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Fig. 3. Median SNR evolution across 30 MEG problems. For the low-SNR
regime, the best o is chosen. It happens to be 0(2) = 0.6 for all solvers.

V. CONCLUSION

We introduced a reweighted sparse coding formulation of
the SBL optimization problem, leading to an efficient iterative
algorithm. Our results show that for T' = 1, the proposed
approach significantly outperforms CHAMPAGNE regarding
computational efficiency while ensuring exact sparsity. For
T > 1, performance depends on the choice of the iterative
thresholding solver: while FISTA proves suboptimal, using
Celer yields competitive results. In the low-SNR regime,
the non-reweighted formulation consistently achieves superior
efficiency. An unexpected observation is that setting p = 0
systematically leads to the best results, which warrants fur-
ther investigation. Future work will also focus on analyzing
the convergence properties of the iterates by leveraging the
Kurdyka-Lojasiewicz framework.
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